M1.(a)
Method 1
Mass of H^{2}
$(=1.92 \mathrm{~g})$

Method 2
Percentage of $\mathrm{H}_{2} \mathrm{O}=44 \%$
(= 1.92 g)
If there is an $A E$ in $M 1$ then can score $M 2$ and $M 3$
If M_{r} incorrect can only score M1

ZnSO_{4}	$\mathrm{H}_{2} \mathrm{O}$	ZnSO 4	H 2 O	
$\underline{2.46}$	$\underline{1.92}$	$-\frac{56}{18}$	161.5	$\underline{44}$
161.5			18	
$(0.0152$		$0.107)$	$(0.347$	
$\left(\begin{array}{c}1\end{array}\right.$	$:$	$7)$	(1)	$2.444)$
$x=7$			$x=7$	$7)$

If $x=7$ with working then award 3 marks.
Allow alternative methods.
If M1 incorrect due to AE, M3 must be an integer.
(b) Moles $\mathrm{HCl}=\underline{0.12(0)}$
$\mathrm{mol} \mathrm{ZnCl}_{2}=0.06(0)$ OR $\underline{0.12 / 2}$

If M2 incorrect then CE and cannot score M2, M3 and M4.
mass $\mathrm{ZnCl}_{2}=0.06 \times 136.4$
Allow $65.4+(2 \times 35.5)$ for 136.4
$=\underline{8.18(4)}(\mathrm{g})$ OR $\underline{8.2}(\mathrm{~g})$
Must be to 2 significant figures or more. Ignore units.
(c) Moles $\mathrm{ZnCl}_{2}=\frac{10.7}{136.4}(=0.0784)$

OR moles $\mathrm{Zn}=0.0784$
Mass Zn reacting $=0.0784 \times 65.4=(5.13 \mathrm{~g})$
M2 is for their M1 $\times 65.4$
\% purity of $\mathrm{Zn}=\frac{5.13}{5.68} \times 100$
M 3 is $\mathrm{M} 2 \times 100 / 5.68$ provided M 2 is <5.68
$=\underline{90.2} \%$ OR $\underline{90.3 \%}$
Allow alternative methods.
M1 = Moles $\mathrm{ZnCl}_{2}=\underline{10.7}(=0.0784)$
136.4

M2 $=$ Theoretical moles $\mathrm{Zn}=\underline{5.68(=0.0869)}$
65.4
$M 3=M 1 \times 100 / M 2=(0.0784 \times 100 / 0.0869)$
$M 4=\underline{90.2 \%}$ OR $\underline{90.3 \%}$
(d) Ionic

$$
\text { If not ionic } C E=0 / 3
$$

Strong (electrostatic) attraction (between ions)
between oppositely charged ions / + and - ions / F^{-}and Zn^{2+} ions If IMF, molecules, metallic bonding implied $C E=0 / 3$

M2.(a) (CO_{2} from) burning (fossil) fuels
(b) $\mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaHCO}_{3}+\mathrm{NH}_{4} \mathrm{Cl}$

Allow multiples, including fractions. Ignore state symbols.
(c) $\mathrm{CaO}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$

Allow multiples, including fractions.
Allow ionic equations.
Do not allow equations involving $\mathrm{NH}_{4} \mathrm{OH}$ or NH_{4}^{+}on the right hand side.
Ignore state symbols.
(d) (i) $=(106) \times 100 /(117+100(.1))$

Do not penalise precision but must be to minimum of two significant figures.
$=48.8$
This answer without working scores 1 mark only.
(ii) The percentage atom economy cannot be improved

OR
Sell the by-product / CaCl_{2} (solution)
Do not accept answers which refer to improving the efficiency of the process.
(e) It is used up but then regenerated later in the cycle / No overall consumption of NH_{3}

Allow 'can act as a catalyst'.

M3.(a) Cobalt has variable oxidation states
Allow exists as $\mathrm{Co}(\mathrm{II})$ and Co (III)
(It can act as an intermediate that) lowers the activation energy
Allow (alternative route with) lower E_{a}
$\mathrm{CH}_{3} \mathrm{CHO}+2 \mathrm{Co}^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{Co}^{2+}+2 \mathrm{H}^{+}$
Allow multiples; allow molecular formulae
Allow equations with $\mathrm{H}_{3} \mathrm{O}+$

$$
\frac{1}{2} \mathrm{O}_{2}+2 \mathrm{Co}^{2+}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{Co}^{3+}+\mathrm{H}_{2} \mathrm{O}
$$

(b) (i) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+3 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \rightarrow\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$

Do not allow en in equation, allow $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}$

The number of particles increases / changes from 4 to 7
Can score M2 and M3 even if equation incorrect or missing provided number of particles increases

So the entropy change is positive / disorder increases / entropy increases
(ii) Minimum for M1 is 3 bidentate ligands bonded to Co

Ignore all charges for M1 and M3 but penalise charges on
Page 5

Ligands need not have any atoms shown but diagram must show 6 bonds from ligands to Co, 2 from each ligand

Minimum for $\mathbf{M} 2$ is one ligand identified as $\mathrm{H}_{2} \mathrm{~N}----\mathrm{NH}_{2}$
Allow linkage as $-\mathrm{C}-\mathrm{C}$ - or just a line.

Minimum for M3 is one bidentate ligand showing two arrows from separate nitrogens to cobalt
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}\right.$ (square brackets not essential)

Difference due to incomplete oxidation in the preparation
Allow incomplete reaction.
Allow formation [$\left.\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ etc.
Some chloride ions act as ligands / replace NH_{3} in complex.
Do not allow 'impure sample' or reference to practical deficiencies

M4.(a) (i) Two rings only around nitrogen or sulfur
Lose this mark if more than 2 atoms are ringed.
Do not allow two atoms at the same end of the ion.
(ii) 275.8

Accept this answer only. Do not allow 276
(iii) Carboxylate / COO^{-}

Allow salt of carboxylic acid or just carboxylic acid.
(b) $\quad(32.1 / 102.1)=31.4 \%$

Do not penalise precision but do not allow 1 significant figure.
(c) Zineb is mixed with a solvent / water

Max=2 if M1 missed

Use of column / paper / TLC
Lose M1 and M2 for GLC

Appropriate collection of the ETU fraction
OR Appropriate method of detecting ETU
Allow ETU is an early fraction in a column or collecting a range of samples over time, lowest retention time / travels furthest on paper or TLC (allow 1 mark for having the longest retention time in GLC).

Method of identification of ETU (by comparison with standard using chromatography)

If method completely inappropriate, only M1 is accessible

