Method 1		Method 2		
Mass of $H_2O =$	4.38-2.46	Percentage of H	Percentage of H₂O = 44%	
(= 1.92 g)				
	If there is an AE in M1 ther If M, incorrect can only sco		}	1
ZnSO ₄	H ₂ O	ZnSO4	H2O	•
<u>2.46</u>	<u>1.92</u>	56	<u>44</u>	
161.5	18	161.5	18	
				1
(0.0152	0.107)	(0.347	2.444)	
(1:	7)	(1:	7)	
x = 7		x = 7		
If x = 7 with working then award 3 marks. Allow alternative methods. If M1 incorrect due to AE, M3 must be an integer.				1
(b) Moles HC	cl = <u>0.12(0)</u>			1
mol ZnCl₂	<u>= 0.06(0)</u> OR <u>0.12 / 2</u>			1
	If M2 incorrect then CE and	d cannot score M2, M3	and M4.	
mass ZnC	$Sl_2 = 0.06 \times 136.4$			

Allow 65.4 + (2 × 35.5) for 136.4

1

M1.(a)

PhysicsAndMathsTutor.com

(d)

Ionic

Page 3

If not ionic CE = 0/3

Strong (electrostatic) attraction (between ions)

1

1

1

$$= 90.2\% \text{ OR } 90.3\%$$
Allow alternative methods.
M1 = Moles $ZnCl_2 = 10.7 (= 0.0784)$
136.4
M2 = Theoretical moles $Zn = 5.68 (= 0.0869)$
65.4
M3 = M1 × 100 / M2 = (0.0784 × 100 / 0.0869)
M4 = 90.2\% \text{ OR } 90.3\%

M3 is M2 × 100 / 5.68 provided M2 is < 5.68

% purity of $Zn = \frac{5.13}{5.68} \times 100$

(c) Moles
$$ZnCl_2 = \frac{136.4}{(= 0.0784)}$$

OR moles Zn = 0.0784

10.7

= 8.18(4) (g) **OR** 8.2 (g) Must be to 2 significant figures or more. Ignore units.

1

1

1

1

between oppositely charged ions / + and – ions / F^- and Zn^{2+} ions If IMF, molecules, metallic bonding implied CE = 0/3

[14]

1

1

1

1

M2.(a) (CO₂ from) burning (fossil) fuels

(b) NaCl + CO₂ + NH₃ + H₂O \rightarrow NaHCO₃ + NH₄Cl Allow multiples, including fractions. Ignore state symbols.

 (c) CaO + 2NH₄CI → CaCl₂ + 2NH₃ + H₂O Allow multiples, including fractions. Allow ionic equations. Do not allow equations involving NH₄OH or NH₄⁺ on the right hand side. Ignore state symbols.

(d) (i) = (106) × 100 / (117 + 100(.1))
 Do not penalise precision but must be to minimum of two significant figures.

= 48.8

This answer without working scores 1 mark only.

1

1

(ii) The percentage atom economy cannot be improved

OR

Sell the by-product / CaCl₂ (solution) Do not accept answers which refer to improving the efficiency of the process.

 (e) It is used up but then regenerated later in the cycle / No overall consumption of NH₃ <i>Allow 'can act as a catalyst'</i>. M3.(a) Cobalt has variable oxidation states 	1 [7]
Allow exists as Co(II) and Co(III)	1	
(It can act as an intermediate that) lowers the activation energy <i>Allow (alternative route with) lower E</i> _a	1	
CH ₃ CHO + 2Co ³⁺ + H ₂ O \rightarrow CH ₃ COOH + 2Co ²⁺ + 2H ⁺ Allow multiples; allow molecular formulae Allow equations with H ₃ O+	1	
$\frac{1}{2}O_{2} + 2Co^{2+} + 2H^{+} \rightarrow 2Co^{3+} + H_{2}O$	1	
(b) (i) $[Co(H_2O)_8]^{2*} + 3H_2NCH_2CH_2NH_2 \rightarrow [Co(H_2NCH_2CH_2NH_2)_3]^{2*} + 6H_2O$ Do not allow en in equation, allow $C_2H_8N_2$	1	
The number of particles increases / changes from 4 to 7 Can score M2 and M3 even if equation incorrect or missing provided number of particles increases	1	
So the entropy change is positive / disorder increases / entropy increases	1	
(ii) Minimum for M1 is 3 bidentate ligands bonded to Co Ignore all charges for M1 and M3 but penalise charges on		

	Ligands need not have any atoms shown but diagram must show 6 bonds from ligands to Co, 2 from each ligand Minimum for M2 is one ligand identified as H₂NNH₂ <i>Allow linkage as −C−C− or just a line.</i>	1
	Minimum for M3 is one bidentate ligand showing two arrows from separate nitrogens to cobalt	1
(c)	Moles of cobalt = (50 × 0.203) / 1000 = <u>0.01015</u> mol Allow 0.0101 to 0.0102	1
	Moles of AgCI = 4.22/143.4 = 0.0294 Allow 0.029 If not AgCI (eg AgCI₂ or AgNO₃), lose this mark and can only score M1, M4 and M5	1
	Ratio = CI ⁻ to Co = 2.9 : 1 Do not allow 3 : 1 if this is the only answer but if 2.9:1 seen somewhere in answer credit this as M3	1
	[Co(NH₃)₅]Cl₃ (square brackets not essential)	1
	Difference due to incomplete oxidation in the preparation Allow incomplete reaction. Allow formation [Co(NH₃)₅CI]Cl₂ etc. Some chloride ions act as ligands / replace NH₃ in complex. Do not allow 'impure sample' or reference to practical deficiencies	

M4. (a)	 (i) Two rings only around nitrogen or sulfur Lose this mark if more than 2 atoms are ringed. Do not allow two atoms at the same end of the ion. 	1
	(ii) 275.8 Accept this answer only. Do not allow 276	1
	(iii) Carboxylate / COO⁻ Allow salt of carboxylic acid or just carboxylic acid.	1
(b)	(32.1 / 102.1) = 31.4% Do not penalise precision but do not allow 1 significant figure.	1
(c)	Zineb is mixed with a <u>solvent / water</u> Max=2 if M1 missed	1
	Use of column / paper / TLC Lose M1 and M2 for GLC	1
	Appropriate collection of the ETU fraction OR Appropriate method of detecting ETU Allow ETU is an early fraction in a column or collecting a range of samples over time, lowest retention time / travels furthest on paper or TLC (allow 1 mark for having the longest retention time in GLC).	1

Method of identification of ETU (by <u>comparison</u> with standard using chromatography)

If method completely inappropriate, only M1 is accessible

[8]

1